login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376251
Numbers that have a second-largest exponent in their prime factorization and it is smaller by 1 than the largest exponent.
1
12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 180, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 252, 260, 261, 268, 275, 276, 279
OFFSET
1,1
COMMENTS
First differs from its subsequence A325241 at n = 74: a(74) = 360 = 2^3 * 3^2 * 5 is not a term of A325241.
Numbers k such that 0 < A375933(k) = A051903(k) - 1.
The asymptotic density of this sequence is Sum_{k>=2} d(k) = 0.24179287499021146826..., where d(2) = 1/zeta(3) - 1/zeta(2), and d(k) = 1/zeta(k+1) - 1/zeta(k) + 1/zeta(k-1) - Product_{p prime} (1 - 1/p^(k-1) + 1/p^k - 1/p^(k+1)) for k >= 3.
LINKS
MATHEMATICA
q[k_] := Module[{e = Union[FactorInteger[k][[;; , 2]]]}, Length[e] > 1 && e[[-2]] + 1 == e[[-1]]]; Select[Range[300], q]
PROG
(PARI) is(k) = {my(e = Set(factor(k)[, 2])); #e > 1 && e[#e-1] + 1 == e[#e]; }
CROSSREFS
Subsequence of A013929.
Subsequences: A067259, A325241, A376249.
Sequence in context: A187039 A360554 A325241 * A376249 A072357 A340780
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 17 2024
STATUS
approved