login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022244 Gaussian binomial coefficients [ n,4 ] for q = 8. 1
1, 4681, 19477641, 79936505481, 327499862955657, 1341480367403783817, 5494724540479236953737, 22506402447071849965115017, 92186229916592298695053497993, 377594800550975709003441429239433, 1546628304496854696033468524851058313 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 4..200

FORMULA

a(n) = Product_{i=1..4} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 05 2016

MATHEMATICA

Table[QBinomial[n, 4, 8], {n, 4, 20}] (* Vincenzo Librandi, Aug 05 2016 *)

PROG

(Sage) [gaussian_binomial(n, 4, 8) for n in range(4, 15)] # Zerinvary Lajos, May 27 2009

(MAGMA) r:=4; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016

CROSSREFS

Sequence in context: A066731 A230487 A230483 * A252382 A190131 A226801

Adjacent sequences:  A022241 A022242 A022243 * A022245 A022246 A022247

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Offset changed by Vincenzo Librandi, Aug 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 13:24 EST 2021. Contains 349563 sequences. (Running on oeis4.)