|
|
A022241
|
|
Gaussian binomial coefficients [ n,12 ] for q = 7.
|
|
1
|
|
|
1, 16148168401, 228167924870691555751, 3167372099179629291002826414551, 43858773775052010561068085080055954232604, 607098005839518055568051981319221867272218743306204, 8403089283059531541841722254852038933206966651131615823995604
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
12,2
|
|
REFERENCES
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 12..112
|
|
FORMULA
|
a(n) = Product_{i=1..12} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 05 2016
|
|
MATHEMATICA
|
Table[QBinomial[n, 12, 7], {n, 12, 20}] (* Vincenzo Librandi, Aug 05 2016 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 12, 7) for n in range(12, 19)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016
|
|
CROSSREFS
|
Sequence in context: A233704 A153432 A349324 * A186016 A186176 A233805
Adjacent sequences: A022238 A022239 A022240 * A022242 A022243 A022244
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
Offset changed by Vincenzo Librandi, Aug 05 2016
|
|
STATUS
|
approved
|
|
|
|