%I #14 Sep 08 2022 08:44:46
%S 1,16148168401,228167924870691555751,3167372099179629291002826414551,
%T 43858773775052010561068085080055954232604,
%U 607098005839518055568051981319221867272218743306204,8403089283059531541841722254852038933206966651131615823995604
%N Gaussian binomial coefficients [ n,12 ] for q = 7.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022241/b022241.txt">Table of n, a(n) for n = 12..112</a>
%F a(n) = Product_{i=1..12} (7^(n-i+1)-1)/(7^i-1), by definition. - _Vincenzo Librandi_, Aug 05 2016
%t Table[QBinomial[n, 12, 7], {n, 12, 20}] (* _Vincenzo Librandi_, Aug 05 2016 *)
%o (Sage) [gaussian_binomial(n,12,7) for n in range(12,19)] # _Zerinvary Lajos_, May 28 2009
%o (Magma) r:=12; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 05 2016
%K nonn
%O 12,2
%A _N. J. A. Sloane_.
%E Offset changed by _Vincenzo Librandi_, Aug 05 2016