|
|
A022247
|
|
Gaussian binomial coefficients [ n,7 ] for q = 8.
|
|
1
|
|
|
1, 2396745, 5106121684105, 10729268895402608265, 22506402447071849965115017, 47200787357710533846587480462985, 98987603216356624971042374274625033865, 207592149047991945127896428337152713645086345, 435352316509302207932941670577738326850779860686473
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
7,2
|
|
REFERENCES
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Product_{i=1..7} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^7/((1 - x)*(1 - 8*x)*(1 - 64*x)*(1 - 512*x)*(1 - 4096*x)*(1 - 32768*x)*(1 - 262144*x)*(1 - 2097152*x)). - Ilya Gutkovskiy, Aug 06 2016
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 7, 8) for n in range(7, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|