login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375918
Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).
9
703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
OFFSET
1,1
COMMENTS
Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).
LINKS
EXAMPLE
3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
PROG
(PARI) isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3, k)^((k-1)/2) == -1
CROSSREFS
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |
Sequence in context: A214486 A045146 A083735 * A161021 A283521 A334010
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 02 2024
STATUS
approved