OFFSET
1,1
COMMENTS
Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).
LINKS
Jianing Song, Table of n, a(n) for n = 1..1000
EXAMPLE
3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
PROG
(PARI) isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3, k)^((k-1)/2) == -1
CROSSREFS
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 02 2024
STATUS
approved