The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047713 Euler-Jacobi pseudoprimes: 2^((n-1)/2) == (2 / n) mod n, where (2 / n) is a Jacobi symbol. 13
 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Odd composite numbers n such that 2^((n-1)/2) == (-1)^((n^2-1)/8) mod n. - Thomas Ordowski, Dec 21 2013 Most terms are congruent to 1 mod 8 (cf. A006971). Among the first 1000 terms, the number of terms congruent to 1, 3, 5 and 7 mod 8 are 764, 47, 125 and 64, respectively. - Jianing Song, Sep 05 2018 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, A12. H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes the subsequence A006971). LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe) Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime. Eric Weisstein's World of Mathematics, Pseudoprime. MATHEMATICA Select[ Range[ 3, 105000, 2 ], Mod[ 2^((# - 1)/2) - JacobiSymbol[ 2, # ], # ] == 0 && ! PrimeQ[ # ] & ] PROG (PARI) is(n)=n%2 && Mod(2, n)^(n\2)==kronecker(2, n) && !isprime(n) \\ Charles R Greathouse IV, Dec 20 2013 CROSSREFS Cf. A002997, A001567, A048950. Terms in this sequence satisfying certain congruence: A270698 (congruent to 1 mod 4), A270697 (congruent to 3 mod 4), A006971 (congruent to +-1 mod 8), A244628 (congruent to 3 mod 8), A244626 (congruent to 5 mod 8). Sequence in context: A135721 A290486 A253595 * A006971 A270698 A218483 Adjacent sequences:  A047710 A047711 A047712 * A047714 A047715 A047716 KEYWORD nonn,nice AUTHOR EXTENSIONS Corrected by Eric W. Weisstein; more terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 06:59 EDT 2021. Contains 342946 sequences. (Running on oeis4.)