login
A375265
a(n) = n/3 if n mod 3 = 0; otherwise a(n) = n/2 if n mod 2 = 0; otherwise a(n) = 3*n + 1.
5
4, 1, 1, 2, 16, 2, 22, 4, 3, 5, 34, 4, 40, 7, 5, 8, 52, 6, 58, 10, 7, 11, 70, 8, 76, 13, 9, 14, 88, 10, 94, 16, 11, 17, 106, 12, 112, 19, 13, 20, 124, 14, 130, 22, 15, 23, 142, 16, 148, 25, 17, 26, 160, 18, 166, 28, 19, 29, 178, 20, 184, 31, 21, 32, 196, 22, 202, 34, 23
OFFSET
1,1
COMMENTS
Anderson (1987) reformulates the 3x+1 conjecture using this function.
LINKS
Stuart Anderson, Struggling with the 3x+1 problem, The Mathematical Gazette, Vol. 71, Issue 458, December 1987, p. 273 (see A005186 for a scanned copy).
Jeffrey C. Lagarias, The 3x + 1 Problem: An Annotated Bibliography (1963-1999), arXiv:math/0309224 [math.NT], 2011, p. 6.
MAPLE
a := n -> ifelse(irem(n, 3) = 0, iquo(n, 3), ifelse(irem(n, 2) = 0, iquo(n, 2), 3*n + 1)): seq(a(n), n = 1..69); # Peter Luschny, Aug 14 2024
MATHEMATICA
A375265[n_] := Which[Divisible[n, 3], n/3, Divisible[n, 2], n/2, True, 3*n + 1];
Array[A375265, 100]
CROSSREFS
Cf. A375266 (trajectories).
Sequence in context: A355694 A265273 A376985 * A341932 A293770 A111311
KEYWORD
nonn,easy
AUTHOR
Paolo Xausa, Aug 08 2024
STATUS
approved