login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374334
a(n) is the numerator of x(n) = (16*x(n-1) + (120*n^2 - 89*n + 16)/(512*n^4 - 1024*n^3 + 712*n^2 - 206*n + 21)) mod 1, with x(0) = 0.
7
0, 2, 1076, 188663, 106894973, 32442016954, 16143697977964, 43667396600461261, 82482175187690988496, 80845733759021750791, 209616749220518838502, 48891577015658186678698, 60882892596227901210360094, 108196850082040258114673507582, 189145139720511629801253759599798
OFFSET
0,2
COMMENTS
A constant alpha, defined as alpha = Sum_{n >= 1} p(n)/(q(n)*b^n), is b-normal if and only if the associated sequence, defined by x(0) = 0 and x(n) = (b*x(n-1) + p(n)/q(n)) mod 1, is equidistributed in the unit interval.
The present sequence gives the numerators of the associated sequence (with b = 2) for alpha = Pi. See Bailey and Borwein (2005), p. 505 (second example of Theorem 3). In the same paper, on p. 513, they conjecture that, for n >= 1, y(n) = floor(16*x(n)) = A062964(n+1). See also Bailey and Crandall (2001), p. 176.
Denominators are given by A374335.
LINKS
David H. Bailey and Jonathan M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the American Mathematical Society, May 2005, Vol. 52, No. 5, pp. 502-514.
David H. Bailey and Richard E. Crandall, On the Random Character of Fundamental Constant Expansions, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (preprint draft).
MATHEMATICA
Block[{n = 0}, Numerator[NestList[Mod[16*# + (120*(++n)^2 - 89*n + 16)/(512*n^4 - 1024*n^3 + 712*n^2 - 206*n + 21), 1] &, 0, 20]]]
CROSSREFS
Sequence in context: A159858 A108963 A152510 * A324590 A344669 A321633
KEYWORD
nonn,frac
AUTHOR
Paolo Xausa, Jul 06 2024
STATUS
approved