login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152510
1/60 of the number of permutations of 5 indistinguishable copies of 1..n with exactly 3 local maxima.
1
0, 2, 1066, 328314, 87554515, 22414176982, 5672480870616, 1431066048773744, 360732335571459920, 90911141639422741152, 22910020941551289849856, 5773350885207751422091264, 1454885995214232796339050240, 366631366567387199476086758912, 92391110171365499708617443239936
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (382,-38020,1394280,-17690400,92123136,-170698752).
FORMULA
From Colin Barker, Jul 19 2020: (Start)
G.f.: x^2*(2 + 302*x - 2858*x^2 - 120673*x^3 - 71148*x^4) / ((1 - 6*x)^3*(1 - 56*x)^2*(1 - 252*x)).
a(n) = 382*a(n-1) - 38020*a(n-2) + 1394280*a(n-3) - 17690400*a(n-4) + 92123136*a(n-5) - 170698752*a(n-6) for n>6.
(End)
MATHEMATICA
LinearRecurrence[{382, -38020, 1394280, -17690400, 92123136, -170698752}, {0, 2, 1066, 328314, 87554515, 22414176982}, 20] (* Harvey P. Dale, Mar 14 2022 *)
PROG
(PARI) \\ PeaksBySig defined in A334774.
a(n) = {PeaksBySig(vector(n, i, 5), [2])[1]/60} \\ Andrew Howroyd, May 12 2020
(PARI) concat(0, Vec(x^2*(2 + 302*x - 2858*x^2 - 120673*x^3 - 71148*x^4) / ((1 - 6*x)^3*(1 - 56*x)^2*(1 - 252*x)) + O(x^20))) \\ Colin Barker, Jul 19 2020
CROSSREFS
Sequence in context: A111203 A159858 A108963 * A374334 A324590 A344669
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 06 2008
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 12 2020
STATUS
approved