|
|
A152513
|
|
1/21 of the number of permutations of 6 indistinguishable copies of 1..n with exactly 2 local maxima.
|
|
5
|
|
|
0, 5, 497, 42581, 3584693, 301183841, 25300030889, 2125207418285, 178517461842461, 14995467100301177, 1259619238806161681, 105808016078078472389, 8887873350698981879429, 746581361459780256986513, 62712834362629583374730873, 5267878086460945365330876893
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (98,-1225,4116).
|
|
FORMULA
|
a(n) = (61*84^(n-1) - 61*7^(n-1) - 66*(n-1)*7^(n-1))/847. - Andrew Howroyd, May 10 2020
From Colin Barker, Jul 16 2020: (Start)
G.f.: x^2*(5 + 7*x) / ((1 - 7*x)^2*(1 - 84*x)).
a(n) = 98*a(n-1) - 1225*a(n-2) + 4116*a(n-3) for n>3.
(End)
|
|
PROG
|
(PARI) a(n) = {(61*84^(n-1) - 61*7^(n-1) - 66*(n-1)*7^(n-1))/847} \\ Andrew Howroyd, May 10 2020
(PARI) Vec(x^2*(5 + 7*x) / ((1 - 7*x)^2*(1 - 84*x)) + O(x^18)) \\ Colin Barker, Jul 16 2020
|
|
CROSSREFS
|
Cf. A152494, A334773.
Sequence in context: A268113 A308132 A352181 * A012822 A124358 A198719
Adjacent sequences: A152510 A152511 A152512 * A152514 A152515 A152516
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
R. H. Hardin, Dec 06 2008
|
|
EXTENSIONS
|
Terms a(7) and beyond from Andrew Howroyd, May 10 2020
|
|
STATUS
|
approved
|
|
|
|