login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111203
x such that pi(x)/li(x) is greater than it is for all smaller x > 1.5.
0
2, 1051, 1063, 1069, 1097, 1103, 1109, 1123, 1129, 1303, 1307, 1321, 1327, 1619, 1621, 1627, 2399, 2447, 2477, 2719, 2731, 2753, 2801, 2803, 3929, 3931, 3947, 4273, 4289, 4297, 5851, 5857, 5861, 5867, 5869, 5881, 6367, 6373, 6379, 9433, 9437, 9439
OFFSET
1,1
COMMENTS
This will be a very long but finite sequence, since pi(x)/li(x) will exceed unity for some very large values of x (as Littlewood first showed) but then will asymptotically tend to unity by the prime number theorem. One large but unknown element of the sequence will be the smallest x for which pi(x)>li(x).
EXAMPLE
For 1.5<x<2, li(x)>0 and pi(x)=0, so pi(x)/li(x)=0. a(1)=2 because at x=2, pi(x)/li(x) has its increase, to 1/li(2)=0.9567878442. a(2)=1051 because x=1051 gives the next time pi(x)/li(x) gives a higher value, 177/Li(1051)=0.956932676.
MAPLE
with(numtheory): Digits:=50; s:=0: for n from 1 to 10000 do if (evalf(n/Li(ithprime(n)))>s) then s:=evalf(n/Li(ithprime(n))): print(ithprime(n)) else s:=s end if end do;
CROSSREFS
Sequence in context: A218437 A166852 A236951 * A159858 A108963 A152510
KEYWORD
nonn,fini
AUTHOR
Don N. Page, Oct 24 2005
STATUS
approved