

A111203


x such that pi(x)/li(x) is greater than it is for all smaller x > 1.5.


0



2, 1051, 1063, 1069, 1097, 1103, 1109, 1123, 1129, 1303, 1307, 1321, 1327, 1619, 1621, 1627, 2399, 2447, 2477, 2719, 2731, 2753, 2801, 2803, 3929, 3931, 3947, 4273, 4289, 4297, 5851, 5857, 5861, 5867, 5869, 5881, 6367, 6373, 6379, 9433, 9437, 9439
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This will be a very long but finite sequence, since pi(x)/li(x) will exceed unity for some very large values of x (as Littlewood first showed) but then will asymptotically tend to unity by the prime number theorem. One large but unknown element of the sequence will be the smallest x for which pi(x)>li(x).


LINKS

Table of n, a(n) for n=1..42.


EXAMPLE

For 1.5<x<2, li(x)>0 and pi(x)=0, so pi(x)/li(x)=0. a(1)=2 because at x=2, pi(x)/li(x) has its increase, to 1/li(2)=0.9567878442. a(2)=1051 because x=1051 gives the next time pi(x)/li(x) gives a higher value, 177/Li(1051)=0.956932676.


MAPLE

with(numtheory): Digits:=50; s:=0: for n from 1 to 10000 do if (evalf(n/Li(ithprime(n)))>s) then s:=evalf(n/Li(ithprime(n))): print(ithprime(n)) else s:=s end if end do;


CROSSREFS

Sequence in context: A218437 A166852 A236951 * A159858 A108963 A152510
Adjacent sequences: A111200 A111201 A111202 * A111204 A111205 A111206


KEYWORD

nonn,fini


AUTHOR

Don N. Page, Oct 24 2005


STATUS

approved



