login
A236951
Primes p such that p^4 + p +/- 1 are twin primes.
1
2, 1049, 1847, 1871, 2129, 2789, 5351, 10709, 11279, 13907, 14321, 17627, 27179, 27809, 29921, 30029, 31859, 37511, 39359, 40559, 40841, 43577, 46091, 46301, 58271, 62207, 62981, 66347, 66947, 68777, 72341, 75617, 79397, 85091, 86579
OFFSET
1,1
COMMENTS
Intersection of A236044 and A236950.
LINKS
EXAMPLE
2 is prime and 2^4+2+1 (19) and 2^4+2-1 (17) are twin primes. Thus, 2 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[#^4 + # - 1] && PrimeQ[#^4 + # + 1]&] (* Vincenzo Librandi, Feb 14 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**6) if isprime(p) and isprime(p**4+p+1) and isprime(p**4+p-1)}
(Magma) [p: p in PrimesUpTo(90000) | IsPrime(p^4+p-1) and IsPrime(p^4+p+1)]; // Vincenzo Librandi, Feb 14 2014
CROSSREFS
Sequence in context: A182447 A218437 A166852 * A111203 A159858 A108963
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 01 2014
STATUS
approved