login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236954
E.g.f. satisfies: A'(x) = A(x)^7 * A(-x) with A(0) = 1.
5
1, 1, 6, 76, 1296, 30976, 872976, 30638656, 1205016576, 55768141696, 2815440120576, 161768220568576, 9971911862317056, 684392034689560576, 49826356469468676096, 3976369161704254898176, 333879082003664326066176, 30374928089785982961811456, 2889528935298595311805464576
OFFSET
0,3
COMMENTS
Conjectures: (Start)
a(n) == 1 (mod 5) for n>=0;
a(n) == 0 (mod 17) for n>=16;
a(n) == 0 (mod 19) for n>=17;
a(n) == 0 (mod 37) for n>=36.
(End)
FORMULA
E.g.f.: 1/(1 - 5*Series_Reversion( Integral (1 - 25*x^2)^(1/5) dx ))^(1/5).
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 76*x^3/3! + 1296*x^4/4! + 30976*x^5/5! +...
Related series.
A(x)^7 = 1 + 7*x + 84*x^2/2! + 1498*x^3/3! + 34776*x^4/4! + 1006432*x^5/5! +...
Note that 1 - 1/A(x)^5 is an odd function:
1 - 1/A(x)^5 = 5*x + 50*x^3/3! + 11000*x^5/5! + 7460000*x^7/7! + 10335200000*x^9/9! +...
where Series_Reversion((1 - 1/A(x)^5)/5) = Integral (1-25*x^2)^(1/5) dx.
PROG
(PARI) {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^7*subst(A, x, -x) +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=1/(1-5*serreverse(intformal((1-25*x^2 +x*O(x^n))^(1/5))))^(1/5); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 08 2014
STATUS
approved