The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236954 E.g.f. satisfies: A'(x) = A(x)^7 * A(-x) with A(0) = 1. 5
 1, 1, 6, 76, 1296, 30976, 872976, 30638656, 1205016576, 55768141696, 2815440120576, 161768220568576, 9971911862317056, 684392034689560576, 49826356469468676096, 3976369161704254898176, 333879082003664326066176, 30374928089785982961811456, 2889528935298595311805464576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjectures: (Start) a(n) == 1 (mod 5) for n>=0; a(n) == 0 (mod 17) for n>=16; a(n) == 0 (mod 19) for n>=17; a(n) == 0 (mod 37) for n>=36. (End) LINKS FORMULA E.g.f.: 1/(1 - 5*Series_Reversion( Integral (1 - 25*x^2)^(1/5) dx ))^(1/5). EXAMPLE E.g.f.: A(x) = 1 + x + 6*x^2/2! + 76*x^3/3! + 1296*x^4/4! + 30976*x^5/5! +... Related series. A(x)^7 = 1 + 7*x + 84*x^2/2! + 1498*x^3/3! + 34776*x^4/4! + 1006432*x^5/5! +... Note that 1 - 1/A(x)^5 is an odd function: 1 - 1/A(x)^5 = 5*x + 50*x^3/3! + 11000*x^5/5! + 7460000*x^7/7! + 10335200000*x^9/9! +... where Series_Reversion((1 - 1/A(x)^5)/5) = Integral (1-25*x^2)^(1/5) dx. PROG (PARI) {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^7*subst(A, x, -x) +x*O(x^n) )); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=local(A=1); A=1/(1-5*serreverse(intformal((1-25*x^2 +x*O(x^n))^(1/5))))^(1/5); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A236953, A235371, A236955, A236956, A236957, A236958. Sequence in context: A231281 A120593 A318614 * A116874 A030044 A145165 Adjacent sequences:  A236951 A236952 A236953 * A236955 A236956 A236957 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 16:19 EDT 2021. Contains 345037 sequences. (Running on oeis4.)