The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318614 Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n). 0
 1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Area interior to the central loop of u = 2*H = x^2 + y^2 - (1/2)*(x^4 + y^4) equals to Pi*S(u), when u in [0,1/2]. REFERENCES E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204. LINKS E. Weisstein, Plane Division by Ellipses, Mathworld--A Wolfram Web Resource. E. Weisstein, Circle Ellipse Intersection, Mathworld--A Wolfram Web Resource. FORMULA (n-1)^2*n*a(n) - 12*(n-1)*(2*n-3)^2*a(n-1) + 128*(n-2)*(2*n-5)*(2*n-3)*a(n-2) == 0. a(n) = A000108(n-1)*A098410(n-1). EXAMPLE Singular Value: S(1/2) = 1/sqrt(2). N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N.   n  |                  u ==================================================   0  |  0.08544689553344134756293807606337...   1  |  0.23840989875904155311088418238272...   2  |  0.36638282702449450473835851051425...   3  |  0.46595506694324457665483887176081... MATHEMATICA RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}] PROG (GAP) a:=[1, 6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018 CROSSREFS Cf. A318417, A010503, A247719, A000888. Sequence in context: A333097 A231281 A120593 * A236954 A116874 A030044 Adjacent sequences:  A318611 A318612 A318613 * A318615 A318616 A318617 KEYWORD nonn AUTHOR Bradley Klee, Aug 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:32 EDT 2021. Contains 347487 sequences. (Running on oeis4.)