|
|
A120593
|
|
G.f. satisfies: 5*A(x) = 4 + x + A(x)^4, starting with [1,1,6].
|
|
3
|
|
|
1, 1, 6, 76, 1201, 21252, 402892, 8001412, 164321982, 3461110532, 74358814838, 1623152780808, 35897318940028, 802620009567628, 18112759482614328, 412020809942451504, 9437537418826749369, 217486633306640519124
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
|
|
LINKS
|
|
|
FORMULA
|
G.f. satisfies:
(1) A(x) = 1 + Series_Reversion(1+5*x - (1+x)^4).
(2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (4+x)^(3*n+1)/5^(4*n+1), by Lagrange Inversion.
(3) A(x) = F(x/A(x)) and F(x) = A(x*F(x)) where F(x) = (4 + F(x)^4)/(5-x) is the g.f. of A244856. - Paul D. Hanna, Jul 09 2014
a(n) ~ 2^(-7/3 + 3*n) * (-32 + 15*10^(1/3))^(1/2 - n) / (5^(1/3) * n^(3/2) * sqrt(3*Pi)). - Vaclav Kotesovec, Nov 28 2017
|
|
EXAMPLE
|
A(x) = 1 + x + 6*x^2 + 76*x^3 + 1201*x^4 + 21252*x^5 +...
A(x)^4 = 1 + 4*x + 30*x^2 + 380*x^3 + 6005*x^4 + 106260*x^5 +...
|
|
MATHEMATICA
|
CoefficientList[1 + InverseSeries[Series[1+5*x - (1+x)^4, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
|
|
PROG
|
(PARI) {a(n)=local(A=1+x+6*x^2+x*O(x^n)); for(i=0, n, A=A-5*A+4+x+A^4); polcoeff(A, n)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|