Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 28 2017 03:36:32
%S 1,1,6,76,1201,21252,402892,8001412,164321982,3461110532,74358814838,
%T 1623152780808,35897318940028,802620009567628,18112759482614328,
%U 412020809942451504,9437537418826749369,217486633306640519124
%N G.f. satisfies: 5*A(x) = 4 + x + A(x)^4, starting with [1,1,6].
%C See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
%F G.f. satisfies:
%F (1) A(x) = 1 + Series_Reversion(1+5*x - (1+x)^4).
%F (2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (4+x)^(3*n+1)/5^(4*n+1), by Lagrange Inversion.
%F (3) A(x) = F(x/A(x)) and F(x) = A(x*F(x)) where F(x) = (4 + F(x)^4)/(5-x) is the g.f. of A244856. - _Paul D. Hanna_, Jul 09 2014
%F a(n) ~ 2^(-7/3 + 3*n) * (-32 + 15*10^(1/3))^(1/2 - n) / (5^(1/3) * n^(3/2) * sqrt(3*Pi)). - _Vaclav Kotesovec_, Nov 28 2017
%e A(x) = 1 + x + 6*x^2 + 76*x^3 + 1201*x^4 + 21252*x^5 +...
%e A(x)^4 = 1 + 4*x + 30*x^2 + 380*x^3 + 6005*x^4 + 106260*x^5 +...
%t CoefficientList[1 + InverseSeries[Series[1+5*x - (1+x)^4, {x, 0, 20}], x], x] (* _Vaclav Kotesovec_, Nov 28 2017 *)
%o (PARI) {a(n)=local(A=1+x+6*x^2+x*O(x^n));for(i=0,n,A=A-5*A+4+x+A^4);polcoeff(A,n)}
%Y Cf. A120588 - A120592, A120594 - A120607; A244856.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jun 16 2006, Jan 24 2008