|
|
A120594
|
|
G.f. satisfies: 8*A(x) = 7 + 8*x + A(x)^4, starting with [1,2,6].
|
|
3
|
|
|
1, 2, 6, 44, 394, 3948, 42364, 476120, 5532714, 65935804, 801461012, 9897836520, 123840983812, 1566487308344, 19999112293944, 257365488659376, 3334967582746218, 43477505482249692, 569854228738577572
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: A(x) = 1 + Series_Reversion((1+8*x - (1+x)^4)/8). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (7+8*x)^(3*n+1)/8^(4*n+1). - Paul D. Hanna, Jan 24 2008
a(n) ~ 2^(-11/6 + 3*n) * (-7 + 6*2^(1/3))^(1/2 - n) / (n^(3/2) * sqrt(3*Pi)). - Vaclav Kotesovec, Nov 28 2017
|
|
EXAMPLE
|
A(x) = 1 + 2*x + 6*x^2 + 44*x^3 + 394*x^4 + 3948*x^5 + 42364*x^6 +...
A(x)^4 = 1 + 8*x + 48*x^2 + 352*x^3 + 3152*x^4 + 31584*x^5 + 338912*x^6+..
|
|
MATHEMATICA
|
CoefficientList[1 + InverseSeries[Series[(1+8*x - (1+x)^4)/8, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
|
|
PROG
|
(PARI) {a(n)=local(A=1+2*x+6*x^2+x*O(x^n)); for(i=0, n, A=A+(-8*A+7+8*x+A^4)/4); polcoeff(A, n)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|