login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374332
a(n) is the numerator of x(n) = (2*x(n-1) + 1/n) mod 1, with x(0) = 0.
4
0, 0, 1, 1, 11, 1, 7, 64, 289, 1007, 44, 338, 163, 3505, 8297, 44488, 27221, 823117, 993287, 20403983, 26327699, 27713369, 27650353, 315868349, 2488325579, 6016553239, 1399433807, 3562923992, 9142117861, 275160597119, 268889538733, 3968532770473, 114095155444597
OFFSET
0,5
COMMENTS
A constant alpha, defined as alpha = Sum_{n >= 1} p(n)/(q(n)*b^n), is b-normal if and only if the associated sequence, defined by x(0) = 0 and x(n) = (b*x(n-1) + p(n)/q(n)) mod 1, is equidistributed in the unit interval.
The present sequence gives the numerators of the associated sequence for alpha = log(2) (where b = 2). See Bailey and Borwein (2005), p. 505 (first example of Theorem 3).
Denominators are given by A374333.
LINKS
David H. Bailey and Jonathan M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the American Mathematical Society, May 2005, Vol. 52, No. 5, pp. 502-514.
David H. Bailey and Richard E. Crandall, On the Random Character of Fundamental Constant Expansions, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (preprint draft).
David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, Experimental Mathematics, Vol. 11 (2002), Issue 4, pp. 527-546 (preprint draft).
MATHEMATICA
Block[{n = 0}, Numerator[NestList[Mod[2*# + 1/++n, 1] &, 0, 50]]]
PROG
(Python)
from fractions import Fraction
from itertools import count, islice
def A374332_gen(): # generator of terms
a = Fraction(0, 1)
for n in count(1):
yield a.numerator
a = (2*a+Fraction(1, n)) % 1
A374332_list = list(islice(A374332_gen(), 20)) # Chai Wah Wu, Jul 13 2024
(PARI) x(n) = if (n==0, 0, 2*x(n-1) + 1/n);
a(n) = numerator(frac(x(n))); \\ Michel Marcus, Jul 13 2024
CROSSREFS
Cf. A002162, A374333 (denominators), A374334, A374336.
Sequence in context: A086320 A185540 A095193 * A171250 A010201 A228407
KEYWORD
nonn,frac
AUTHOR
Paolo Xausa, Jul 06 2024
STATUS
approved