OFFSET
0,5
COMMENTS
A constant alpha, defined as alpha = Sum_{n >= 1} p(n)/(q(n)*b^n), is b-normal if and only if the associated sequence, defined by x(0) = 0 and x(n) = (b*x(n-1) + p(n)/q(n)) mod 1, is equidistributed in the unit interval.
The present sequence gives the numerators of the associated sequence for alpha = log(2) (where b = 2). See Bailey and Borwein (2005), p. 505 (first example of Theorem 3).
Denominators are given by A374333.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..2000
David H. Bailey and Jonathan M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the American Mathematical Society, May 2005, Vol. 52, No. 5, pp. 502-514.
David H. Bailey and Richard E. Crandall, On the Random Character of Fundamental Constant Expansions, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (preprint draft).
David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, Experimental Mathematics, Vol. 11 (2002), Issue 4, pp. 527-546 (preprint draft).
MATHEMATICA
Block[{n = 0}, Numerator[NestList[Mod[2*# + 1/++n, 1] &, 0, 50]]]
PROG
(Python)
from fractions import Fraction
from itertools import count, islice
def A374332_gen(): # generator of terms
a = Fraction(0, 1)
for n in count(1):
yield a.numerator
a = (2*a+Fraction(1, n)) % 1
(PARI) x(n) = if (n==0, 0, 2*x(n-1) + 1/n);
a(n) = numerator(frac(x(n))); \\ Michel Marcus, Jul 13 2024
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Paolo Xausa, Jul 06 2024
STATUS
approved