login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373677
Last element of each maximal run of non-prime-powers.
23
1, 6, 10, 12, 15, 18, 22, 24, 26, 28, 30, 36, 40, 42, 46, 48, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 88, 96, 100, 102, 106, 108, 112, 120, 124, 126, 130, 136, 138, 148, 150, 156, 162, 166, 168, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238
OFFSET
1,2
COMMENTS
We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373676.
Consists of all non-prime-powers k such that k+1 is a prime-power.
EXAMPLE
The maximal runs of non-prime-powers begin:
1
6
10
12
14 15
18
20 21 22
24
26
28
30
33 34 35 36
38 39 40
42
44 45 46
48
50 51 52
54 55 56 57 58
60
MATHEMATICA
Select[Range[100], !PrimePowerQ[#]&&PrimePowerQ[#+1]&]
CROSSREFS
See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677 (this sequence)
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
Sequence in context: A362754 A143958 A294278 * A297366 A378616 A325472
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 16 2024
STATUS
approved