login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373100
Last digit of n*2^n - 1.
2
1, 7, 3, 3, 9, 3, 5, 7, 7, 9, 7, 1, 5, 5, 9, 5, 3, 1, 1, 9, 1, 7, 3, 3, 9, 3, 5, 7, 7, 9, 7, 1, 5, 5, 9, 5, 3, 1, 1, 9, 1, 7, 3, 3, 9, 3, 5, 7, 7, 9, 7, 1, 5, 5, 9, 5, 3, 1, 1, 9, 1, 7
OFFSET
1,2
COMMENTS
This is a cyclic sequence of 20 numbers, using only 1,3,5,7 and 9 (4 times each).
REFERENCES
Richard K. Guy (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. section B20, ISBN 0-387-20860-7.
FORMULA
a(n) = A010879(A003261(n)).
From Chai Wah Wu, Jul 06 2024: (Start)
a(n) = a(n-2) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - a(n-8) + a(n-9) - a(n-11) + a(n-13) for n > 13.
G.f.: x*(-9*x^12 - x^11 + 8*x^10 - 2*x^9 - 13*x^8 + 2*x^7 + 9*x^6 - 6*x^5 - 7*x^4 + 4*x^3 - 2*x^2 - 7*x - 1)/((x - 1)*(x^4 + x^3 + x^2 + x + 1)*(x^8 - x^6 + x^4 - x^2 + 1)). (End)
MAPLE
lastDigit := proc(n)
return (n * 2^n - 1) mod 10;
end proc:
# Example usage
minN := 1; maxN := 10;
lastDigits := [seq(lastDigit(n), n = minN .. maxN)];
print(lastDigits);
MATHEMATICA
lastDigit[n_] := Mod[n * 2^n - 1, 10]
(* Example usage *)
minN = 1; maxN = 10;
lastDigits = Table[lastDigit[n], {n, minN, maxN}]
Print[lastDigits]
PROG
(Python)
def last_digit(n):
return (n * 2**n - 1) % 10
# Example usage
min_n, max_n = 1, 10
last_digits = [last_digit(n) for n in range(min_n, max_n + 1)]
print(last_digits)
(PARI) a(n) = lift(Mod(n*2^n - 1, 10))
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved