login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Last digit of n*2^n - 1.
2

%I #17 Jul 06 2024 23:47:36

%S 1,7,3,3,9,3,5,7,7,9,7,1,5,5,9,5,3,1,1,9,1,7,3,3,9,3,5,7,7,9,7,1,5,5,

%T 9,5,3,1,1,9,1,7,3,3,9,3,5,7,7,9,7,1,5,5,9,5,3,1,1,9,1,7

%N Last digit of n*2^n - 1.

%C This is a cyclic sequence of 20 numbers, using only 1,3,5,7 and 9 (4 times each).

%D Richard K. Guy (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. section B20, ISBN 0-387-20860-7.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Woodall_number">Woodall number</a>.

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,-1,1,1,-1,-1,1,0,-1,0,1).

%F a(n) = A010879(A003261(n)).

%F From _Chai Wah Wu_, Jul 06 2024: (Start)

%F a(n) = a(n-2) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - a(n-8) + a(n-9) - a(n-11) + a(n-13) for n > 13.

%F G.f.: x*(-9*x^12 - x^11 + 8*x^10 - 2*x^9 - 13*x^8 + 2*x^7 + 9*x^6 - 6*x^5 - 7*x^4 + 4*x^3 - 2*x^2 - 7*x - 1)/((x - 1)*(x^4 + x^3 + x^2 + x + 1)*(x^8 - x^6 + x^4 - x^2 + 1)). (End)

%p lastDigit := proc(n)

%p return (n * 2^n - 1) mod 10;

%p end proc:

%p # Example usage

%p minN := 1; maxN := 10;

%p lastDigits := [seq(lastDigit(n), n = minN .. maxN)];

%p print(lastDigits);

%t lastDigit[n_] := Mod[n * 2^n - 1, 10]

%t (* Example usage *)

%t minN = 1; maxN = 10;

%t lastDigits = Table[lastDigit[n], {n, minN, maxN}]

%t Print[lastDigits]

%o (Python)

%o def last_digit(n):

%o return (n * 2**n - 1) % 10

%o # Example usage

%o min_n, max_n = 1, 10

%o last_digits = [last_digit(n) for n in range(min_n, max_n + 1)]

%o print(last_digits)

%o (PARI) a(n) = lift(Mod(n*2^n - 1, 10))

%Y Cf. A010879, A003261.

%Y Cf. A373098, A373099.

%K nonn,base,easy

%O 1,2

%A _Javier Rodríguez Ríos_, May 23 2024