login
A372937
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^5.
2
1, 47, 323, 1744, 3749, 15181, 19207, 59648, 84969, 176203, 175691, 563312, 399853, 902729, 1210927, 1970176, 1503377, 3993543, 2606419, 6538256, 6203861, 8257477, 6716183, 19266304, 12105625, 18793091, 21172347, 33497008, 21218429, 56913569, 29552671, 64028672
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^4.
a(n) = Sum_{d|n} mu(n/d) * d^4 * sigma(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(4*e-4)*(p^e*(p^5-1) - (p^4-1))/(p-1).
Dirichlet g.f.: zeta(s-4)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, c = zeta(2)/zeta(6) = 315/(2*Pi^4) = 1.616892... (A157292). (End)
MATHEMATICA
f[p_, e_] := p^(4*e-4)*(p^e*(p^5-1) - (p^4-1))/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*d^4*sigma(d));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 17 2024
STATUS
approved