login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372929
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^4.
6
1, 23, 107, 424, 749, 2461, 2743, 7232, 9369, 17227, 15971, 45368, 30757, 63089, 80143, 119296, 88433, 215487, 137179, 317576, 293501, 367333, 292007, 773824, 483625, 707411, 777843, 1163032, 731669, 1843289, 953311, 1937408, 1708897, 2033959, 2054507, 3972456
OFFSET
1,2
FORMULA
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^3.
a(n) = Sum_{d|n} mu(n/d) * d^3 * sigma(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-4)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(2)/zeta(5) = 1.586353589... . (End)
MATHEMATICA
f[p_, e_] := p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d));
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 17 2024
STATUS
approved