login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^5.
2

%I #14 May 22 2024 01:58:03

%S 1,47,323,1744,3749,15181,19207,59648,84969,176203,175691,563312,

%T 399853,902729,1210927,1970176,1503377,3993543,2606419,6538256,

%U 6203861,8257477,6716183,19266304,12105625,18793091,21172347,33497008,21218429,56913569,29552671,64028672

%N a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^5.

%H Amiram Eldar, <a href="/A372937/b372937.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^4.

%F a(n) = Sum_{d|n} mu(n/d) * d^4 * sigma(d), where mu is the Moebius function A008683.

%F From _Amiram Eldar_, May 21 2024: (Start)

%F Multiplicative with a(p^e) = p^(4*e-4)*(p^e*(p^5-1) - (p^4-1))/(p-1).

%F Dirichlet g.f.: zeta(s-4)*zeta(s-5)/zeta(s).

%F Sum_{k=1..n} a(k) ~ c * n^6 / 6, c = zeta(2)/zeta(6) = 315/(2*Pi^4) = 1.616892... (A157292). (End)

%t f[p_, e_] := p^(4*e-4)*(p^e*(p^5-1) - (p^4-1))/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, May 21 2024 *)

%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*d^4*sigma(d));

%Y Cf. A343498, A372926, A372929, A372931.

%Y Cf. A000203, A008683.

%Y Cf. A013661, A013664, A157292.

%K nonn,mult

%O 1,2

%A _Seiichi Manyama_, May 17 2024