login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371766
Triangle read by rows: T(n, k) = A371898(n, k) / A371767(n, k).
2
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 16, 21, 7, 1, 1, 65, 142, 63, 11, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
OFFSET
0,5
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 5, 4, 1;
[4] 1, 16, 21, 7, 1;
[5] 1, 65, 142, 63, 11, 1;
[6] 1, 326, 1201, 709, 151, 16, 1;
[7] 1, 1957, 12336, 9709, 2521, 311, 22, 1;
[8] 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1;
MAPLE
A371766 := (n, k) -> local j; add((-1)^(k-j)*binomial(k, j)*hypergeom([1, -n],
[], -j), j = 0..k)/((k! * n!)/(n - k)!):
seq(print(seq(simplify(A371766(n, k)), k = 0..n)), n = 0..8);
CROSSREFS
Antidiagonally read subtriangle of A181783.
Sequence in context: A152924 A220738 A284732 * A327483 A327884 A050145
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 14 2024
STATUS
approved