login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A371766
Triangle read by rows: T(n, k) = A371898(n, k) / A371767(n, k).
2
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 16, 21, 7, 1, 1, 65, 142, 63, 11, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
OFFSET
0,5
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 5, 4, 1;
[4] 1, 16, 21, 7, 1;
[5] 1, 65, 142, 63, 11, 1;
[6] 1, 326, 1201, 709, 151, 16, 1;
[7] 1, 1957, 12336, 9709, 2521, 311, 22, 1;
[8] 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1;
MAPLE
A371766 := (n, k) -> local j; add((-1)^(k-j)*binomial(k, j)*hypergeom([1, -n],
[], -j), j = 0..k)/((k! * n!)/(n - k)!):
seq(print(seq(simplify(A371766(n, k)), k = 0..n)), n = 0..8);
CROSSREFS
Antidiagonally read subtriangle of A181783.
Sequence in context: A152924 A220738 A284732 * A327483 A327884 A050145
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 14 2024
STATUS
approved