login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327483
Triangle read by rows where T(n,k) is the number of integer partitions of 2^n with mean 2^k, 0 <= k <= n.
5
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 22, 34, 8, 1, 1, 231, 919, 249, 16, 1, 1, 8349, 112540, 55974, 1906, 32, 1, 1, 1741630, 107608848, 161410965, 4602893, 14905, 64, 1, 1, 4351078600, 1949696350591, 12623411092535, 676491536028, 461346215, 117874, 128, 1
OFFSET
0,5
COMMENTS
T(n,k) is the number of partitions of 2^n into 2^(n-k) parts. - Chai Wah Wu, Sep 21 2023
LINKS
FORMULA
T(n+1,n) = 2^n for n >= 0. - Chai Wah Wu, Sep 14 2019
EXAMPLE
Triangle begins:
1
1 1
1 2 1
1 5 4 1
1 22 34 8 1
1 231 919 249 16 1
1 8349 112540 55974 1906 32 1
1 1741630 107608848 161410965 4602893 14905 64 1
...
MATHEMATICA
Table[Length[Select[IntegerPartitions[2^n], Mean[#]==2^k&]], {n, 0, 5}, {k, 0, n}]
PROG
(Python)
from sympy.utilities.iterables import partitions
from sympy import npartitions
def A327483_T(n, k):
if k == 0 or k == n: return 1
if k == n-1: return 1<<n-1
if k == 1: return npartitions(1<<n-1)
a, b = 1<<n, 1<<n-k
return sum(1 for s, p in partitions(a, m=b, size=True) if s==b) # Chai Wah Wu, Sep 21 2023
(Python)
# uses A008284_T
def A327483_T(n, k): return A008284_T(1<<n, 1<<n-k) # Chai Wah Wu, Sep 21 2023
CROSSREFS
Row sums are A327484.
Column k = 1 is A068413 (shifted once to the right).
Sequence in context: A220738 A284732 A371766 * A327884 A050145 A222573
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 13 2019
EXTENSIONS
a(28)-a(35) from Chai Wah Wu, Sep 14 2019
Row n=8 from Alois P. Heinz, Sep 21 2023
STATUS
approved