OFFSET
0,5
COMMENTS
T(n,k) is the number of partitions of 2^n into 2^(n-k) parts. - Chai Wah Wu, Sep 21 2023
LINKS
Alois P. Heinz, Rows n = 0..13, flattened
FORMULA
T(n+1,n) = 2^n for n >= 0. - Chai Wah Wu, Sep 14 2019
EXAMPLE
Triangle begins:
1
1 1
1 2 1
1 5 4 1
1 22 34 8 1
1 231 919 249 16 1
1 8349 112540 55974 1906 32 1
1 1741630 107608848 161410965 4602893 14905 64 1
...
MATHEMATICA
Table[Length[Select[IntegerPartitions[2^n], Mean[#]==2^k&]], {n, 0, 5}, {k, 0, n}]
PROG
(Python)
from sympy.utilities.iterables import partitions
from sympy import npartitions
def A327483_T(n, k):
if k == 0 or k == n: return 1
if k == n-1: return 1<<n-1
if k == 1: return npartitions(1<<n-1)
a, b = 1<<n, 1<<n-k
return sum(1 for s, p in partitions(a, m=b, size=True) if s==b) # Chai Wah Wu, Sep 21 2023
(Python)
# uses A008284_T
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 13 2019
EXTENSIONS
a(28)-a(35) from Chai Wah Wu, Sep 14 2019
Row n=8 from Alois P. Heinz, Sep 21 2023
STATUS
approved