login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327480
a(n) is the maximum number of squares of unit area that can be removed from an n X n square while still obtaining a connected figure without holes and of the longest perimeter.
3
0, 0, 2, 4, 8, 12, 22, 28, 40, 48, 64, 76, 94, 108, 130, 148, 172, 192, 220, 244, 274, 300, 334, 364, 400, 432, 472, 508, 550, 588, 634, 676, 724, 768, 820, 868, 922, 972, 1030, 1084, 1144, 1200, 1264, 1324, 1390, 1452, 1522, 1588, 1660, 1728, 1804, 1876, 1954
OFFSET
0,3
COMMENTS
a(n) is equal to h_1(n) + h_2(n) as defined in A309038.
FORMULA
O.g.f.: 2*x^2*(1 + x^2 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)).
E.g.f.: (1/24)*exp(-x)*(33 + 9*exp(2*x)*(7 - 2*x + 2*x^2) - 2*exp(x)*(48 + 12*x^2 + x^4) - 12*exp(x)*sin(x)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 10.
a(n) = (1/8)*(21 - 12*n + 6*n^2 + 11*(-1)^n - 4*A056594(n+1) for n > 4, a(0) = 0, a(1) = 0, a(2) = 2, a(3) = 4, a(4) = 8.
Limit_{n->oo} a(n)/A000290(n) = 3/4.
EXAMPLE
Illustrations for n = 2..7:
__ __ __ __ __
|__|__ |__|__|__| |__|__|__|
|__| __|__|__ __|__|__ __
|__| |__| |__| | |
|__ __|
a(2) = 2 a(3) = 4 a(4) = 8
__ __ __ __ __ __ __ __ __ __ __
|__|__|__ __ __| |__|__|__| |__|__ |__|__|__| |__|__|__|
__|__|__ __ __|__|__ __|__| __|__|__ __|__|__
| | |__|__|__| |__| |__|__|__| |__| |__|__|__| |__|
| | __|__|__ __ __|__|__ __ __|__|__ __
|__| |__| |__| |__|__|__| |__|__ |__|__|__| |__|__|__|
|__| |__| __|__|__ __|__|__
|__| |__| |__| |__|
a(5) = 12 a(6) = 22 a(7) = 28
MAPLE
gf := (1/24)*exp(-x)*(33+9*exp(2*x)*(2*x^2-2*x+7)-2*exp(x)*(x^4+12*x^2+48)-12*exp(x)*sin(x)); ser := series(gf, x, 53):
seq(factorial(n)*coeff(ser, x, n), n = 0 .. 52)
MATHEMATICA
Join[{0, 0, 2, 4, 8}, Table[(1/8)*(21-12n+6n^2+11*(-1)^n-4*Sin[n*Pi/2]), {n, 5, 52}]]
PROG
(Magma) I:=[0, 0, 2, 4, 8, 12, 22, 28, 40, 48, 64]; [n le 11 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..53]];
(PARI) concat([0, 0], Vec(2*x^2*(1+x^2+2*x^4-2*x^5+2*x^6-2*x^7+x^8)/((1-x)^3*(1+x)*(1+x^2))+O(x^53)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Sep 16 2019
STATUS
approved