Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jun 25 2023 04:24:20
%S 0,0,2,4,8,12,22,28,40,48,64,76,94,108,130,148,172,192,220,244,274,
%T 300,334,364,400,432,472,508,550,588,634,676,724,768,820,868,922,972,
%U 1030,1084,1144,1200,1264,1324,1390,1452,1522,1588,1660,1728,1804,1876,1954
%N a(n) is the maximum number of squares of unit area that can be removed from an n X n square while still obtaining a connected figure without holes and of the longest perimeter.
%C a(n) is equal to h_1(n) + h_2(n) as defined in A309038.
%H Stefano Spezia, <a href="/A327480/b327480.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F O.g.f.: 2*x^2*(1 + x^2 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)).
%F E.g.f.: (1/24)*exp(-x)*(33 + 9*exp(2*x)*(7 - 2*x + 2*x^2) - 2*exp(x)*(48 + 12*x^2 + x^4) - 12*exp(x)*sin(x)).
%F a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 10.
%F a(n) = (1/8)*(21 - 12*n + 6*n^2 + 11*(-1)^n - 4*A056594(n+1) for n > 4, a(0) = 0, a(1) = 0, a(2) = 2, a(3) = 4, a(4) = 8.
%F Limit_{n->oo} a(n)/A000290(n) = 3/4.
%e Illustrations for n = 2..7:
%e __ __ __ __ __
%e |__|__ |__|__|__| |__|__|__|
%e |__| __|__|__ __|__|__ __
%e |__| |__| |__| | |
%e |__ __|
%e a(2) = 2 a(3) = 4 a(4) = 8
%e __ __ __ __ __ __ __ __ __ __ __
%e |__|__|__ __ __| |__|__|__| |__|__ |__|__|__| |__|__|__|
%e __|__|__ __ __|__|__ __|__| __|__|__ __|__|__
%e | | |__|__|__| |__| |__|__|__| |__| |__|__|__| |__|
%e | | __|__|__ __ __|__|__ __ __|__|__ __
%e |__| |__| |__| |__|__|__| |__|__ |__|__|__| |__|__|__|
%e |__| |__| __|__|__ __|__|__
%e |__| |__| |__| |__|
%e a(5) = 12 a(6) = 22 a(7) = 28
%p gf := (1/24)*exp(-x)*(33+9*exp(2*x)*(2*x^2-2*x+7)-2*exp(x)*(x^4+12*x^2+48)-12*exp(x)*sin(x)); ser := series(gf, x, 53):
%p seq(factorial(n)*coeff(ser, x, n), n = 0 .. 52)
%t Join[{0,0,2,4,8},Table[(1/8)*(21-12n+6n^2+11*(-1)^n-4*Sin[n*Pi/2]),{n,5,52}]]
%o (Magma) I:=[0, 0, 2, 4, 8, 12, 22, 28, 40, 48, 64]; [n le 11 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..53]];
%o (PARI) concat([0, 0], Vec(2*x^2*(1+x^2+2*x^4-2*x^5+2*x^6-2*x^7+x^8)/((1-x)^3*(1+x)*(1+x^2))+O(x^53)))
%Y Cf. A000290, A056594, A309038, A326118, A327479.
%K nonn,easy
%O 0,3
%A _Stefano Spezia_, Sep 16 2019