login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152924
Triangle read by rows: T(n,k) = Stirling2(n, k+1) + abs(Stirling1(n,k)), 0 <= k <= n.
0
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 13, 17, 7, 1, 1, 39, 75, 45, 11, 1, 1, 151, 364, 290, 100, 16, 1, 1, 783, 2065, 1974, 875, 196, 22, 1, 1, 5167, 14034, 14833, 7819, 2226, 350, 29, 1, 1, 40575, 112609, 125894, 74235, 25095, 4998, 582, 37, 1, 1, 363391, 1035906, 1206805
OFFSET
0,5
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 5, 4, 1},
{1, 13, 17, 7, 1},
{1, 39, 75, 45, 11, 1},
{1, 151, 364, 290, 100, 16, 1},
{1, 783, 2065, 1974, 875, 196, 22, 1},
{1, 5167, 14034, 14833, 7819, 2226, 350, 29, 1},
{1, 40575, 112609, 125894, 74235, 25095, 4998, 582, 37, 1},
{1, 363391, 1035906, 1206805, 766205, 292152, 69153, 10200, 915, 46, 1}
MATHEMATICA
p[x_, n_] = (If[n == 0, 0, Sum[StirlingS2[ n, m]*x^m, {m, 0, n}]/x] + Sum[Abs[StirlingS1[n, m]]*x^m, {m, 0, n}]);
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
PROG
(PARI) T(n, k) = stirling(n, k+1, 2) + abs(stirling(n, k, 1)) \\ Andrew Howroyd, Jan 09 2024
CROSSREFS
Sequence in context: A284949 A263294 A241500 * A220738 A284732 A371766
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 15 2008
EXTENSIONS
Name clarified by Andrew Howroyd, Jan 09 2024
STATUS
approved