Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 10 2024 04:57:28
%S 1,1,1,1,2,1,1,5,4,1,1,13,17,7,1,1,39,75,45,11,1,1,151,364,290,100,16,
%T 1,1,783,2065,1974,875,196,22,1,1,5167,14034,14833,7819,2226,350,29,1,
%U 1,40575,112609,125894,74235,25095,4998,582,37,1,1,363391,1035906,1206805
%N Triangle read by rows: T(n,k) = Stirling2(n, k+1) + abs(Stirling1(n,k)), 0 <= k <= n.
%e {1},
%e {1, 1},
%e {1, 2, 1},
%e {1, 5, 4, 1},
%e {1, 13, 17, 7, 1},
%e {1, 39, 75, 45, 11, 1},
%e {1, 151, 364, 290, 100, 16, 1},
%e {1, 783, 2065, 1974, 875, 196, 22, 1},
%e {1, 5167, 14034, 14833, 7819, 2226, 350, 29, 1},
%e {1, 40575, 112609, 125894, 74235, 25095, 4998, 582, 37, 1},
%e {1, 363391, 1035906, 1206805, 766205, 292152, 69153, 10200, 915, 46, 1}
%t p[x_, n_] = (If[n == 0, 0, Sum[StirlingS2[ n, m]*x^m, {m, 0, n}]/x] + Sum[Abs[StirlingS1[n, m]]*x^m, {m, 0, n}]);
%t Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
%t Flatten[%]
%o (PARI) T(n,k) = stirling(n,k+1,2) + abs(stirling(n,k,1)) \\ _Andrew Howroyd_, Jan 09 2024
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Dec 15 2008
%E Name clarified by _Andrew Howroyd_, Jan 09 2024