login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371157
Expansion of e.g.f. 1/(1 - x - x^2)^(x^2).
3
1, 0, 0, 6, 36, 160, 1620, 18648, 220080, 2924640, 44775360, 753207840, 13836731040, 276442882560, 5972081379264, 138607594171200, 3440465206214400, 90951997553464320, 2551374460670538240, 75694365919478960640, 2368107785432883916800
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{j=0..n} Sum_{k=0..floor(j/2)} binomial(j-k,n-j-k) * |Stirling1(j-k,k)|/(j-k)!.
a(n) ~ sqrt(2*Pi) * phi^(n + 1/phi^2) * n^(n + 3/2 - phi)/ (Gamma(1/phi^2) * 5^(1/(2*phi^2)) * exp(n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 14 2024
PROG
(PARI) a(n) = n!*sum(j=0, n, sum(k=0, j\2, binomial(j-k, n-j-k)*abs(stirling(j-k, k, 1))/(j-k)!));
CROSSREFS
Sequence in context: A263952 A281394 A225380 * A371197 A225012 A228458
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 13 2024
STATUS
approved