The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088369 Expansion of e.g.f.: 1/(1-x-x^2)^x. 1
 1, 0, 2, 9, 44, 390, 3474, 37800, 471344, 6602904, 103271400, 1779944760, 33542915592, 686101244400, 15139184749584, 358465510133640, 9066087526045440, 243928110816129600, 6956913949298380224, 209651038286581756800, 6656701196017929467520, 222116657005058778103680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..400 FORMULA a(n) ~ n! * n^(c-1) / (Gamma(c) * 5^(c/2) * c^c * c^n), where c = (sqrt(5)-1)/2. - Vaclav Kotesovec, Nov 05 2014 MATHEMATICA With[{nn=30}, CoefficientList[Series[1/(1-x-x^2)^x, {x, 0, nn}], x]Range[ 0, nn]!] (* Harvey P. Dale, May 06 2012 *) PROG (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-x-x^2)^x ))); // G. C. Greubel, Dec 12 2022 (SageMath) def A088369_list(prec): P. = PowerSeriesRing(QQ, prec) return P( exp(-x*log(1-x-x^2)) ).egf_to_ogf().list() A088369_list(40) # G. C. Greubel, Dec 12 2022 (PARI) my(x='x+O('x^22)); Vec(serlaplace(1/(1-x-x^2)^x)) \\ Joerg Arndt, Dec 13 2022 CROSSREFS Sequence in context: A318913 A327940 A354623 * A356588 A303938 A059388 Adjacent sequences: A088366 A088367 A088368 * A088370 A088371 A088372 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 28 2003 EXTENSIONS Definition corrected by Vaclav Kotesovec, Nov 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 06:18 EST 2023. Contains 367509 sequences. (Running on oeis4.)