|
|
A088369
|
|
Expansion of e.g.f.: 1/(1-x-x^2)^x.
|
|
1
|
|
|
1, 0, 2, 9, 44, 390, 3474, 37800, 471344, 6602904, 103271400, 1779944760, 33542915592, 686101244400, 15139184749584, 358465510133640, 9066087526045440, 243928110816129600, 6956913949298380224, 209651038286581756800, 6656701196017929467520, 222116657005058778103680
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ n! * n^(c-1) / (Gamma(c) * 5^(c/2) * c^c * c^n), where c = (sqrt(5)-1)/2. - Vaclav Kotesovec, Nov 05 2014
|
|
MATHEMATICA
|
With[{nn=30}, CoefficientList[Series[1/(1-x-x^2)^x, {x, 0, nn}], x]Range[ 0, nn]!] (* Harvey P. Dale, May 06 2012 *)
|
|
PROG
|
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-x-x^2)^x ))); // G. C. Greubel, Dec 12 2022
(SageMath)
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(-x*log(1-x-x^2)) ).egf_to_ogf().list()
(PARI) my(x='x+O('x^22)); Vec(serlaplace(1/(1-x-x^2)^x)) \\ Joerg Arndt, Dec 13 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|