login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088369
Expansion of e.g.f. 1/(1 - x - x^2)^x.
6
1, 0, 2, 9, 44, 390, 3474, 37800, 471344, 6602904, 103271400, 1779944760, 33542915592, 686101244400, 15139184749584, 358465510133640, 9066087526045440, 243928110816129600, 6956913949298380224, 209651038286581756800, 6656701196017929467520, 222116657005058778103680
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n! * n^(c-1) / (Gamma(c) * 5^(c/2) * c^c * c^n), where c = (sqrt(5)-1)/2. - Vaclav Kotesovec, Nov 05 2014
a(n) = n! * Sum_{j=0..n} Sum_{k=0..j} binomial(j,n-j-k) * |Stirling1(j,k)|/j!. - Seiichi Manyama, Mar 13 2024
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1-x-x^2)^x, {x, 0, nn}], x]Range[ 0, nn]!] (* Harvey P. Dale, May 06 2012 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-x-x^2)^x ))); // G. C. Greubel, Dec 12 2022
(SageMath)
def A088369_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(-x*log(1-x-x^2)) ).egf_to_ogf().list()
A088369_list(40) # G. C. Greubel, Dec 12 2022
(PARI) my(x='x+O('x^22)); Vec(serlaplace(1/(1-x-x^2)^x)) \\ Joerg Arndt, Dec 13 2022
CROSSREFS
Cf. A191422.
Sequence in context: A318913 A327940 A354623 * A356588 A303938 A059388
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 28 2003
EXTENSIONS
Definition corrected by Vaclav Kotesovec, Nov 05 2014
STATUS
approved