OFFSET
1,2
COMMENTS
Krivine (1977) proved that Grothendieck's constant <= Pi/(2*log(1+sqrt(2))), and conjectured that this bound is the exact value of the constant. His conjecture was refuted by Braverman et al. (2013). - Amiram Eldar, Jun 24 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 3.11, pp. 235-237.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..20000
Noga Alon, Konstantin Makarychev, Yury Makarychev and Assaf Naor, Quadratic forms on graphs, Inventiones Math., Vol. 163 (2006), pp. 499-522; preprint.
Mark Braverman, Konstantin Makarychev, Yury Makarychev and Assaf Naor, The Grothendieck constant is strictly smaller than Krivine's bound, Forum of Mathematics, Pi, Vol. 1 (2013), e4.
Jean-Louis Krivine, Sur la constante de Grothendieck, C. R. Acad. Sci. Paris, Series A and B, Vol. 284, No. 8 (1977), pp. A445-A446.
Simon Plouffe, Grothendieck's majorant.
Eric Weisstein's World of Mathematics, Grothendieck's Constant.
Wikipedia, Grothendieck inequality.
EXAMPLE
1.7822139781913691117744134529725493407917319097732...
MATHEMATICA
RealDigits[Pi/(2*Log[1 + Sqrt[2]]), 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
PROG
(PARI) Pi/(2*log(1 + sqrt(2))) \\ G. C. Greubel, Mar 27 2018
(Magma) SetDefaultRealField(RealField(150)); R:= RealField(); Pi(R)/(2*Log(1 + Sqrt(2))) // G. C. Greubel, Mar 27 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 27 2003
EXTENSIONS
Edited by N. J. A. Sloane, Oct 01 2006
Named edited by Amiram Eldar, Jun 24 2021
STATUS
approved