Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 14 2024 08:49:51
%S 1,0,0,6,36,160,1620,18648,220080,2924640,44775360,753207840,
%T 13836731040,276442882560,5972081379264,138607594171200,
%U 3440465206214400,90951997553464320,2551374460670538240,75694365919478960640,2368107785432883916800
%N Expansion of e.g.f. 1/(1 - x - x^2)^(x^2).
%F a(n) = n! * Sum_{j=0..n} Sum_{k=0..floor(j/2)} binomial(j-k,n-j-k) * |Stirling1(j-k,k)|/(j-k)!.
%F a(n) ~ sqrt(2*Pi) * phi^(n + 1/phi^2) * n^(n + 3/2 - phi)/ (Gamma(1/phi^2) * 5^(1/(2*phi^2)) * exp(n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Mar 14 2024
%o (PARI) a(n) = n!*sum(j=0, n, sum(k=0, j\2, binomial(j-k, n-j-k)*abs(stirling(j-k, k, 1))/(j-k)!));
%Y Cf. A088369, A371158.
%K nonn
%O 0,4
%A _Seiichi Manyama_, Mar 13 2024