login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371154
Maximum number of vertices for a given diameter n of a Cayley digraph on the cyclic group with generators s=1 and t>s.
0
1, 3, 5, 8, 11, 16, 21, 26, 33, 40, 47, 56, 65, 74, 85, 96, 107, 120, 133, 146, 161, 176, 191, 208, 225, 242, 261, 280, 299, 320, 341, 362, 385, 408, 431, 456, 481, 506, 533, 560, 587
OFFSET
0,2
LINKS
M. A. Fiol, J. L. A. Yebra, I. Alegre, and M. Valero Discrete optimization problem in local networks and data alignment, IEEE Trans. Comput., C-36 (1987), no. 6, 702-713.
FORMULA
a(n) = ceiling((n+2)^2/3)-1 for n<>1.
G.f.: (1 + x - x^4 + 2*x^5 - x^6)/((1 - x)^3*(1 + x + x^2)). - Stefano Spezia, Mar 13 2024
EXAMPLE
For n=10, the maximum number of vertices a(n)=47 is obtained, for instance, with the Cayley digraph Cay(47;1,11).
MATHEMATICA
CoefficientList[Series[(1 + x - x^4 + 2*x^5 - x^6)/((1 - x)^3*(1 + x + x^2)), {x, 0, 40}], x] (* or *) Join[{1, 3}, Table[Ceiling[(n+2)^2/3]-1, {n, 2, 40}]] (* James C. McMahon, Apr 04 2024 *)
CROSSREFS
Essentially A008810 - 1.
Sequence in context: A099836 A344010 A281333 * A338204 A244031 A194803
KEYWORD
nonn,easy
AUTHOR
Miquel A. Fiol, Mar 13 2024
STATUS
approved