login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370906
Partial alternating sums of the alternating sum of divisors function (A206369).
2
1, 0, 2, -1, 3, 1, 7, 2, 9, 5, 15, 9, 21, 15, 23, 12, 28, 21, 39, 27, 39, 29, 51, 41, 62, 50, 70, 52, 80, 72, 102, 81, 101, 85, 109, 88, 124, 106, 130, 110, 150, 138, 180, 150, 178, 156, 202, 180, 223, 202, 234, 198, 250, 230, 270, 240, 276, 248, 306, 282, 342
OFFSET
1,3
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(k+1) * A206369(k).
a(n) = (Pi^2/120) * n^2 + O(n * log(n)^(2/3) * log(log(n))^(4/3)) (Tóth, 2017).
MATHEMATICA
f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[(-1)^(# + 1) * beta[#] &, 100]]
PROG
(PARI) beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * beta(k); print1(s, ", "))};
(Python)
from math import prod
from sympy import factorint
def A370906(n): return sum((1 if k&1 else -1)*prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1), p+1)) for p, e in factorint(k).items()) for k in range(1, n+1)) # Chai Wah Wu, Mar 05 2024
CROSSREFS
Similar sequences: A068762, A068773, A307704, A357817, A362028.
Sequence in context: A191854 A129646 A277640 * A165401 A319916 A213074
KEYWORD
sign,easy
AUTHOR
Amiram Eldar, Mar 05 2024
STATUS
approved