login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial alternating sums of the alternating sum of divisors function (A206369).
6

%I #11 Mar 05 2024 15:54:25

%S 1,0,2,-1,3,1,7,2,9,5,15,9,21,15,23,12,28,21,39,27,39,29,51,41,62,50,

%T 70,52,80,72,102,81,101,85,109,88,124,106,130,110,150,138,180,150,178,

%U 156,202,180,223,202,234,198,250,230,270,240,276,248,306,282,342

%N Partial alternating sums of the alternating sum of divisors function (A206369).

%H Amiram Eldar, <a href="/A370906/b370906.txt">Table of n, a(n) for n = 1..10000</a>

%H László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.

%F a(n) = Sum_{k=1..n} (-1)^(k+1) * A206369(k).

%F a(n) = (Pi^2/120) * n^2 + O(n * log(n)^(2/3) * log(log(n))^(4/3)) (Tóth, 2017).

%t f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[(-1)^(# + 1) * beta[#] &, 100]]

%o (PARI) beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k));}

%o lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * beta(k); print1(s, ", "))};

%o (Python)

%o from math import prod

%o from sympy import factorint

%o def A370906(n): return sum((1 if k&1 else -1)*prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(k).items()) for k in range(1,n+1)) # _Chai Wah Wu_, Mar 05 2024

%Y Cf. A206369, A370905.

%Y Similar sequences: A068762, A068773, A307704, A357817, A362028.

%K sign,easy

%O 1,3

%A _Amiram Eldar_, Mar 05 2024