login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370316
Number of unlabeled simple graphs covering n vertices with at most n edges.
6
1, 0, 1, 2, 5, 10, 28, 68, 193, 534, 1568, 4635, 14146, 43610, 137015, 435227, 1400058, 4547768, 14917504, 49348612, 164596939, 553177992, 1872805144, 6385039022, 21917878860, 75739158828, 263438869515, 922219844982, 3249042441125, 11519128834499, 41097058489426
OFFSET
0,4
LINKS
EXAMPLE
The a(0) = 1 through a(5) = 10 simple graphs:
{} . {12} {12-13} {12-34} {12-13-45}
{12-13-23} {12-13-14} {12-13-14-15}
{12-13-24} {12-13-14-25}
{12-13-14-23} {12-13-23-45}
{12-13-24-34} {12-13-24-35}
{12-13-14-15-23}
{12-13-14-23-25}
{12-13-14-23-45}
{12-13-14-25-35}
{12-13-24-35-45}
MATHEMATICA
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]], p[[i]]}, {i, Length[p]}])], {p, Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n], {2}], {0, n}], Union@@#==Range[n]&]]], {n, 0, 5}]
PROG
(PARI) \\ G defined in A008406.
a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n, A)-G(n-1, A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024
CROSSREFS
The connected case is A005703, labeled A129271.
The case of exactly n edges is A006649, covering case of A001434.
The labeled version is A369191.
Partial row sums of A370167, covering case of A008406.
The non-covering version with loops is A370168, labeled A066383.
The version with loops is A370169, labeled A369194.
The non-covering version is A370315, labeled A369192.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.
Sequence in context: A120896 A074801 A324838 * A257889 A363388 A287963
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 18 2024
EXTENSIONS
a(8) onwards from Andrew Howroyd, Feb 19 2024
STATUS
approved