login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370276
Self-convolution of A138020.
1
1, 4, 16, 72, 352, 1816, 9728, 53584, 301568, 1726488, 10022912, 58864240, 349102080, 2087772784, 12576358400, 76237953440, 464736354304, 2847019090712, 17518413479936, 108224749140784, 670996707147776, 4173817417204944, 26040046909915136, 162905940337309792, 1021700454913933312
OFFSET
0,2
FORMULA
G.f.: A(x) = F(x)^2, where F(x) is the g.f. of A138020.
G.f.: (A(x)-1)/(A(x)+1) = 2*x*sqrt(A(x)) = 2*x*F(x).
G.f.: A(-x*A(x)) = 1/A(x).
G.f.: A(x) = 1 + 4*x*A(x)*B(x^2*A(x)), where B(x) is the g.f. of the central binomial coefficients A000984.
D-finite with recurrence (n-1)*(n+2)*(5*n-12)*a(n) +4*(-55*n^3+242*n^2-316*n+120)*a(n-2) -16*(n-3)*(n-4)*(5*n-2)*a(n-4)=0. - R. J. Mathar, Sep 27 2024
MAPLE
A370276 := proc(n)
add( A138020(i)*A138020(n-i), i=0..n) ;
end proc:
seq(A370276(n), n=0..80) ; # R. J. Mathar, Sep 27 2024
MATHEMATICA
CoefficientList[(InverseSeries[Series[x Sqrt[(1-2x)/(1+2x)], {x, 0, 25}]])^2/x^2, x]
CROSSREFS
Sequence in context: A151246 A152807 A217461 * A129872 A059371 A208528
KEYWORD
nonn
AUTHOR
Alexander Burstein, Feb 13 2024
STATUS
approved