login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129872
Sequence M_n arising in enumeration of arrays of directed blocks (see 2007 Quaintance reference for precise definition). [The next term is not an integer.]
16
1, 4, 16, 72, 364, 1916, 10581, 59681, 343903, 2010089
OFFSET
1,2
COMMENTS
Warning: as defined the terms are not integral in general: 1, 4, 16, 72, 364, 1916, 10581, 59681, 343903, 2010089, 23798969/2, ... - Jocelyn Quaintance, Mar 31 2013.
LINKS
Jocelyn Quaintance, Letter Representations of m x n x p Proper Arrays (2004), arXiv:math/0412244. See Table 1.
Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864. See Table 1.
FORMULA
See Quaintance reference for generating functions that produce A129872-A129886.
PROG
(PARI) listrn(m) = {R = t*O(t); for (n= 1, m, R = (2*t^11 + t^10 + 3*t^9 + 8*t^8 + 12*t^7 + 16*t^6 + 26*t^5 + 20*t^4 + 16*t^3 + 7*t^2 + t - (t^14 - t^12 - 8*t^10 - 11*t^8 - 5*t^6 + t^4)*R^3 - (3*t^13 + t^12 - 5*t^11 - 2*t^10 - 34*t^9 - 14*t^8 - 39*t^7 - 16*t^6 - 11*t^5 - 2*t^4 + 6*t^3 + 2*t^2)*R^2)/(t^12 + t^11 - 7*t^10 - 7*t^9 - 42*t^8 - 35*t^7 - 51*t^6 - 41*t^5 - 14*t^4 - 4*t^3 + 8*t^2 + 6*t + 1); ); return(vector(m, i , polcoeff(R, i, t))); }
listbn(m) = {B = t*O(t); for (n= 1, m, B = (1 + 2*t*B^2 - t^2*B^3 ); ); return(vector(m, i , polcoeff(B, i, t))); }
listMn(m) = {b = listbn(m); /* see also A006013 */ s = listsn(m); /* see A129873 */ d = listdn(m); /* see A129880 */ r = listrn(m); for (i=1, m, v = (b[i] + s[i] - d[i] - r[i])/2; print1(v, ", "); ); }
\\ Michel Marcus, Mar 30 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 26 2007
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2016
STATUS
approved