login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-convolution of A138020.
1

%I #15 Sep 27 2024 06:27:30

%S 1,4,16,72,352,1816,9728,53584,301568,1726488,10022912,58864240,

%T 349102080,2087772784,12576358400,76237953440,464736354304,

%U 2847019090712,17518413479936,108224749140784,670996707147776,4173817417204944,26040046909915136,162905940337309792,1021700454913933312

%N Self-convolution of A138020.

%F G.f.: A(x) = F(x)^2, where F(x) is the g.f. of A138020.

%F G.f.: (A(x)-1)/(A(x)+1) = 2*x*sqrt(A(x)) = 2*x*F(x).

%F G.f.: A(-x*A(x)) = 1/A(x).

%F G.f.: A(x) = 1 + 4*x*A(x)*B(x^2*A(x)), where B(x) is the g.f. of the central binomial coefficients A000984.

%F D-finite with recurrence (n-1)*(n+2)*(5*n-12)*a(n) +4*(-55*n^3+242*n^2-316*n+120)*a(n-2) -16*(n-3)*(n-4)*(5*n-2)*a(n-4)=0. - _R. J. Mathar_, Sep 27 2024

%p A370276 := proc(n)

%p add( A138020(i)*A138020(n-i),i=0..n) ;

%p end proc:

%p seq(A370276(n),n=0..80) ; # _R. J. Mathar_, Sep 27 2024

%t CoefficientList[(InverseSeries[Series[x Sqrt[(1-2x)/(1+2x)],{x,0,25}]])^2/x^2,x]

%Y Cf. A138020, A000984.

%K nonn

%O 0,2

%A _Alexander Burstein_, Feb 13 2024