login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369960
Numbers k such that A003415(k) >= A276086(k) and gcd(k, A003415(k)) = gcd(k, A276086(k)) > 1, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
5
2313, 30033, 30069, 30249, 30282, 32350, 32553, 60093, 60273, 510550, 510561, 510579, 510633, 510723, 510741, 513063, 540963, 542853, 570573, 572910, 1021023, 1021062, 1021239, 1023363, 1531539, 1561563, 9699741, 9699746, 9699759, 9699903, 9699942, 9699957, 9699965, 9700150, 9700353, 9702009, 9702027, 9702049, 9702121
OFFSET
1,1
FORMULA
{k | A085731(n) > 1 and A085731(n) == A324198(n) and A083345(k) >= A351251(k)}.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA369960(n) = { my(t=A003415(n), u=A276086(n), g=gcd(n, t), h=gcd(n, u)); ((t >= u) && (g==h) && (g>1)); };
isA369960(n) = if(!n || issquarefree(n), 0, my(t=A003415(n), u=A276086(n), g=gcd(n, t), h=gcd(n, u)); ((t >= u) && (g==h)));
(PARI)
A085731(n) = { my(f=factor(n)); for(i=1, #f~, if (f[i, 2] % f[i, 1], f[i, 2]--); ); factorback(f); };
A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
isA369960(n) = if(!n || issquarefree(n), 0, ((A085731(n) == A324198(n)) && (A003415(n) >= A276086(n))));
CROSSREFS
Intersection of A351228 and A369963.
Subsequence of the following sequences: A013929, A369958, A369959, A369962.
Sequence in context: A035771 A107567 A238025 * A132214 A133538 A075668
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 07 2024
STATUS
approved