login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369963
Numbers k for which x = gcd(k, A003415(k)) = gcd(k, A276086(k)) and x > 1, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
3
9, 49, 99, 117, 153, 171, 207, 242, 245, 261, 279, 333, 369, 387, 423, 477, 531, 549, 603, 639, 657, 711, 747, 801, 850, 873, 909, 927, 963, 981, 1017, 1071, 1125, 1143, 1150, 1179, 1233, 1250, 1251, 1341, 1359, 1413, 1450, 1467, 1503, 1519, 1557, 1611, 1629, 1719, 1737, 1773, 1791, 1899, 1989, 2007, 2043, 2050, 2061
OFFSET
1,1
COMMENTS
Nonsquarefree terms in A369962.
FORMULA
{k | A085731(k) == A324198(k) and A085731(k) > 1}.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA369963(n) = (!issquarefree(n) && (gcd(n, A003415(n))==gcd(n, A276086(n))));
(PARI)
A085731(n) = { my(f=factor(n)); for(i=1, #f~, if (f[i, 2] % f[i, 1], f[i, 2]--); ); factorback(f); };
A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
isA369963(n) = if(!n, 0, my(u=A085731(n)); if(u<2, 0, (u == A324198(n))));
CROSSREFS
Intersection of A013929 and A369962.
Cf. A003415, A085731, A276086, A324198, A369960 (subsequence).
Sequence in context: A167716 A087352 A039940 * A012111 A138998 A339125
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 07 2024
STATUS
approved