login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368832
Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0.
0
36, 60, 72, 84, 100, 108, 120, 132, 140, 144, 156, 168, 180, 196, 200, 204, 216, 220, 225, 228, 240, 252, 260, 264, 276, 280, 288, 300, 308, 312, 315, 324, 336, 340, 348, 360, 364, 372, 380, 392, 396, 400, 408, 420, 432, 440, 441, 444, 450, 456, 460, 468, 476, 480, 484, 492, 495, 500, 504, 516, 520, 525, 528, 532, 540, 552
OFFSET
1,1
COMMENTS
Cyclic groups of these orders cannot be Schur groups, see the Theorem by [Evdokimov et al.].
LINKS
S. Evdokimov, I. Kovacs, and I. Ponomarenko, On Schurity of Finite Abelian Groups, Comm. Algebra 44 (2016) 101-117, see the Cyclic Schur Group Theorem.
MAPLE
isA007304 := proc(n)
if bigomega(n) = 3 and A001221(n) =3 then
true;
else
false ;
end if;
end proc:
# list of prime exponents
pexp := proc(n)
local e, pe ;
e := [] ;
for pe in ifactors(n)[2] do
e := [op(e), op(2, pe)] ;
end do:
e ;
end proc:
isCycSchGr := proc(n)
local om, nhalf , pe;
om := A001221(n) ;
if om > 4 then
return false;
elif om = 4 then
# require 2*p*q*r
if type(n, 'even') and type(n/2, 'odd') then
nhalf := n/2 ;
# require nhalf =p*q*r in A007304
return isA007304(nhalf) ;
else
false;
end if;
elif om = 3 then
# require p*q*r or 2*p*q^k
if type(n, 'even') and type(n/2, 'odd') then
nhalf := n/2 ;
# require nhalf =p*q^k
pe := pexp(nhalf) ;
if nops(pe) =2 and 1 in convert(pe, set) then
true;
else
false ;
end if;
elif type(n, 'odd') then
# require n =p*q*r
if isA007304(n) then
true;
else
false ;
end if;
else
false;
end if;
elif om = 2 then
# require p*q^k
pe := pexp(n) ;
if 1 in convert(pe, set) then
true;
else
false;
end if;
else
# p^k, k>=0
true ;
end if;
end proc:
for n from 1 to 3000 do
if not isCycSchGr(n) then
printf("%d, ", n) ;
end if;
end do:
CROSSREFS
Cf. A051270 (subsequence), A036785 (subsequence), A074969 (subsequence).
Sequence in context: A260138 A260131 A320632 * A188633 A328961 A335295
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 07 2024
STATUS
approved