login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0.
0

%I #6 Jan 07 2024 09:44:47

%S 36,60,72,84,100,108,120,132,140,144,156,168,180,196,200,204,216,220,

%T 225,228,240,252,260,264,276,280,288,300,308,312,315,324,336,340,348,

%U 360,364,372,380,392,396,400,408,420,432,440,441,444,450,456,460,468,476,480,484,492,495,500,504,516,520,525,528,532,540,552

%N Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0.

%C Cyclic groups of these orders cannot be Schur groups, see the Theorem by [Evdokimov et al.].

%H S. Evdokimov, I. Kovacs, and I. Ponomarenko, <a href="https://doi.org/10.101080/00927872.2024.958848">On Schurity of Finite Abelian Groups</a>, Comm. Algebra 44 (2016) 101-117, see the Cyclic Schur Group Theorem.

%p isA007304 := proc(n)

%p if bigomega(n) = 3 and A001221(n) =3 then

%p true;

%p else

%p false ;

%p end if;

%p end proc:

%p # list of prime exponents

%p pexp := proc(n)

%p local e,pe ;

%p e := [] ;

%p for pe in ifactors(n)[2] do

%p e := [op(e),op(2,pe)] ;

%p end do:

%p e ;

%p end proc:

%p isCycSchGr := proc(n)

%p local om,nhalf ,pe;

%p om := A001221(n) ;

%p if om > 4 then

%p return false;

%p elif om = 4 then

%p # require 2*p*q*r

%p if type(n,'even') and type(n/2,'odd') then

%p nhalf := n/2 ;

%p # require nhalf =p*q*r in A007304

%p return isA007304(nhalf) ;

%p else

%p false;

%p end if;

%p elif om = 3 then

%p # require p*q*r or 2*p*q^k

%p if type(n,'even') and type(n/2,'odd') then

%p nhalf := n/2 ;

%p # require nhalf =p*q^k

%p pe := pexp(nhalf) ;

%p if nops(pe) =2 and 1 in convert(pe,set) then

%p true;

%p else

%p false ;

%p end if;

%p elif type(n,'odd') then

%p # require n =p*q*r

%p if isA007304(n) then

%p true;

%p else

%p false ;

%p end if;

%p else

%p false;

%p end if;

%p elif om = 2 then

%p # require p*q^k

%p pe := pexp(n) ;

%p if 1 in convert(pe,set) then

%p true;

%p else

%p false;

%p end if;

%p else

%p # p^k, k>=0

%p true ;

%p end if;

%p end proc:

%p for n from 1 to 3000 do

%p if not isCycSchGr(n) then

%p printf("%d,",n) ;

%p end if;

%p end do:

%Y Cf. A051270 (subsequence), A036785 (subsequence), A074969 (subsequence).

%K nonn,easy

%O 1,1

%A _R. J. Mathar_, Jan 07 2024