login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036785
Numbers divisible by the squares of two distinct primes.
18
36, 72, 100, 108, 144, 180, 196, 200, 216, 225, 252, 288, 300, 324, 360, 392, 396, 400, 432, 441, 450, 468, 484, 500, 504, 540, 576, 588, 600, 612, 648, 675, 676, 684, 700, 720, 756, 784, 792, 800, 828, 864, 882, 900, 936, 968, 972, 980, 1000, 1008, 1044
OFFSET
1,1
COMMENTS
Not squarefree, not a nontrivial prime power and not in {squarefree} times {nontrivial prime powers}.
Numbers k such that A056170(k) > 1. The asymptotic density of this sequence is 1 - (6/Pi^2) * (1 + A154945) = 0.05668359058... - Amiram Eldar, Nov 01 2020
REFERENCES
CRC Standard Mathematical Tables and Formulae, 30th ed., (1996) page 102-105.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range@ 1050, And[Length@ # > 1, Total@ Boole@ Map[# > 1 &, #[[All, -1]]] > 1] &@ FactorInteger@ # &] (* Michael De Vlieger, Apr 25 2017 *)
dstdpQ[n_]:=Length[Select[Sqrt[#]&/@Divisors[n], PrimeQ]]>1; Select[ Range[ 1100], dstdpQ] (* Harvey P. Dale, Jan 15 2020 *)
PROG
(PARI) is(n)=my(f=vecsort(factor(n)[, 2], , 4)); #f>1&&f[2]>1 \\ Charles R Greathouse IV, Nov 15 2012
CROSSREFS
Equivalent sequence for 3 distinct primes: A318720.
Cf. A085986, A338539, A339245 (subsequences).
Subsequence of A038838.
Sequence in context: A249726 A335463 A192026 * A338539 A347960 A286708
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 03 2000
New name from Charles R Greathouse IV, Nov 15 2012
STATUS
approved