login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328961
Positive integers n such that sigma_0(n) - 3 = (omega(n) - 1) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222.
6
36, 60, 84, 90, 100, 126, 132, 140, 150, 156, 196, 198, 204, 220, 225, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 441, 444, 460, 476, 484, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650
OFFSET
1,1
COMMENTS
These appear to be all positive integers with prime signature (2,2), (2,1,1), (1,2,1), or (1,1,2).
FORMULA
A000005(a(n)) - 3 = (A001222(a(n)) - 1) * A001221(a(n)).
EXAMPLE
The sequence of terms together with their prime indices begins:
36: {1,1,2,2}
60: {1,1,2,3}
84: {1,1,2,4}
90: {1,2,2,3}
100: {1,1,3,3}
126: {1,2,2,4}
132: {1,1,2,5}
140: {1,1,3,4}
150: {1,2,3,3}
156: {1,1,2,6}
196: {1,1,4,4}
198: {1,2,2,5}
204: {1,1,2,7}
220: {1,1,3,5}
225: {2,2,3,3}
228: {1,1,2,8}
234: {1,2,2,6}
260: {1,1,3,6}
276: {1,1,2,9}
MATHEMATICA
Select[Range[100], DivisorSigma[0, #]-3==(PrimeOmega[#]-1)*PrimeNu[#]&]
CROSSREFS
Prime signature is A124010.
(omega(n) - 1) * nu(n) is A307409(n).
sigma_0(n) - omega(n) * nu(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).
Sequence in context: A320632 A368832 A188633 * A335295 A287862 A066505
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 02 2019
STATUS
approved