login
A328958
a(n) = d(n) - (omega(n) * bigomega(n)), where d (number of divisors) = A000005, omega = A001221, bigomega = A001222.
13
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 2, 1, 0, 0, 0, 0, -1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, -1, 1, 0, -1
OFFSET
1,72
COMMENTS
a(n) = sigma_0(n) - omega(n) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222. - The original name of the sequence.
FORMULA
a(n) = A000005(n) - A001222(n) * A001221(n) = A00005(n) - A113901(n).
EXAMPLE
a(144) = sigma_0(144) - omega(144) * nu(144) = 15 - 6 * 2 = 3.
MATHEMATICA
Table[DivisorSigma[0, n]-PrimeOmega[n]*PrimeNu[n], {n, 100}]
PROG
(PARI) A328958(n) = (numdiv(n)-(omega(n)*bigomega(n))); \\ Antti Karttunen, Jan 27 2025
CROSSREFS
Positions of first appearances are A328962.
Zeros are A328956.
Nonzeros are A328957.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).
Sequence in context: A068933 A015472 A049816 * A143542 A072612 A116378
KEYWORD
sign,changed
AUTHOR
Gus Wiseman, Nov 02 2019
EXTENSIONS
More terms added and the function names in the definition replaced with standard OEIS ones - Antti Karttunen, Jan 27 2025
STATUS
approved