OFFSET
1,31
COMMENTS
A graph is called r-regular if every node has exactly r edges. Row sums give A068932.
LINKS
Jason Kimberley, Rows 1..23 of A068933 triangle, flattened.
Jason Kimberley, Disconnected regular graphs (with girth at least 3)
EXAMPLE
This sequence can be computed using the information in A068934. We'll abbreviate A068934(n, r) as C(n, r). To compute D(13, 4), note that the connected components of a 4-regular graph must have at least 5 elements. So a disconnected 13-node 4-regular graph must have two components and their sizes are either 8 and 5, or 7 and 6. So D(13, 4) = C(8, 4)*C(5, 4) + C(7, 4)*C(6, 4) = 6*1 + 2*1 = 8.
0;
1, 0;
1, 0, 0;
1, 1, 0, 0;
1, 0, 0, 0, 0;
1, 1, 1, 0, 0, 0;
1, 0, 1, 0, 0, 0, 0;
1, 1, 2, 1, 0, 0, 0, 0;
1, 0, 3, 0, 0, 0, 0, 0, 0;
1, 1, 4, 2, 1, 0, 0, 0, 0, 0;
1, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0;
1, 1, 8, 9, 3, 1, 0, 0, 0, 0, 0, 0;
1, 0, 9, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 12, 31, 25, 3...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
David Wasserman, Mar 08 2002
STATUS
approved